Early Muscle Recovery following Robotic-Assisted Unicompartmental Knee Arthroplasty

Emma Moon¹, James T Patton², Paul Gaston², Alison Bell¹, David F. Hamilton³

¹Department of Orthopaedics, Spire Murrayfield Hospital, Edinburgh 1²Department of Orthopaedics, University of Edinburgh 1³School of Health and Social Care, Edinburgh Napier University

BACKGROUND

Enhanced implantation accuracy has been demonstrated in robotic-assisted UKA, and this is suggested to lead to lower revision rates and improved functional outcomes through reduced surgical trauma, improved joint kinematics and optimal soft tissue balancing.

Robotic-assisted arthroplasty is still in its infancy though, and detailed clinical outcomes and for these procedures remains comparatively scarce. Rapid early post-operative recovery has been suggested in ra-UKA, however there have been no reports of muscle performance in this patient group. Muscle

performance is a sensitive metric and 30% deficits have been reported at 1year in manual UKA compared to health controls[1].

Figure 1. Robotic-assisted UKA planning and post-operative position 1st image reprinted with permission from Stryker Corporation. Copyright © 2019 Stryker Corporation. All rights reserved

METHODOLOGY

Patients undergoing ra-UKA for medial compartment osteoarthritis at a single independent provider (Spire Murrayfield Hospital, Edinburgh) were recruited with informed consent and assessed pre-operatively, and then at 6- and 12-weeks post-operatively.

Surgical intervention

The MAKO robotic-assisted knee system was used to implant a cemented Restoris MCK implant (Stryker) in all cases [Fig 1]. Three fellowship trained arthroplasty surgeons performed all procedures.

Outcome measures

The primary outcome was maximal muscle strength, evaluated by biodex system-3 isokinetic testing (con/con knee flexion/extension at 60 degrees/sec). Muscle strength (peak torque) was assessed in quadriceps and hamstring groups using a standardised protocol. Functional (10m walk and timed-get-up-and-go), clinical (range of motion), and patient reported outcomes (Oxford Knee Score, Forgotten Joint Score-12, and 0-10 NRS pain scale) were additionally collected at all timepoints.

	Pre-op	6-weeks	12-weeks	Sig*
Operated limb				
Torque (ext.), Nm. Mean (SD)	88.52 (39.86)	74.47 (27.58)	90.41 (38.76)	0.006
Torque (flex.), Nm. Mean (SD)	62.45 (23.18)	54.12 (20.49)	55.07 (17.99)	0.018
Torque/BW (ext.), Mean (SD)	108.66 (44.04)	91.03 (27.76)	112.77 (36.43)	0.010
Torque/BW (flex.), Mean (SD)	65.28 (20.92)	56.95 (15.18)	68.63 (15.77)	0.020
Control limb				
Torque (ext.), Nm. Mean (SD)	121.48 (43.07)	125.28 (44.75)	129.11 (46.80)	0.368
Torque (flex.), Nm, Mean (SD)	62.45 (23.18)	62.53 (19.93)	65.53 (20.71)	0.651
Torque/BW (ext.), Mean (SD)	150.2 (51.32)	153.03 (51.39)	162.96 (62.89)	0.370
Torque/BW (flex.), Mean (SD)	76.11 (24.61)	76.32 (21.02)	82.26 (22.97)	0.650

Table 1. Isokinetic dynamometry

Ext = extension, flex. = flexion, BW = body weight. *Friedman's 2-way ANOVA

	Pre-op	6-weeks	12-weeks	Sig*
Functional tests				
Knee Flexion (deg), Mean (SD)	124.17 (7.33)	126.25 (10.61)	133.47 (8.34)	0.016
Knee Extension (deg), Mean (SD)	0.42 (3.34)	1.27 (3.79)	0.72 (2.56)	0.717
TUG (sec), Mean (SD)	9.03 (2.15)	7.25 (3.42)	6.02 (2.75)	0.015
10m walk test (sec), Mean (SD)	8.00 (2.18)	7.08 (3.14)	6.13 (2.55)	0.021
PROMS				
OKS, Mean (SD)	30.25 (6.90)	37.80 (4.44)	40.55 (5.89)	0.019
FJS-12, Mean (SD)	22.66 (14.75)	45.83 (29.00)	56.44 (35.97)	0.042
NPRS, Mean (SD)	4.00 (2.00)	2.68 (3.10)	1.18 (1.75)	0.004

Statistical Analysis

Primary analysis was overall difference between repeated measures across the 3-timepoints using Friedman's 2-way ANOVA, with post-hoc pairwise comparisons using Wilcoxon Signed Rank tests. Significance was accepted at p<0.05

RESULTS

12 participants were recruited, 2 (17%) were female and 10 (83%) male, mean age was 66.6 (SD 7.62), mean weight was 81.17Kg (SD 15.62).

Maximal muscle strength changed over time in quadriceps (p=0.006) and hamstrings (p=0.018) in the operated limb, with no change observed in the uninvolved limb [Table 1].

By 12-weeks quadriceps strength was 70% and hamstrings 83% of the values achieved in the un-operated limb. This reflects 16% and 25% deficits compared to previously published health controls.

Substantial improvement was seen in all other measures over time, with sequential positive changes between assessments; TUG, 10m walk test, knee flexion and across the PROMs [Table 2]

Patient reported outcome scores showed significant and clinically meaningful improvements from baseline to 12-weeks assessment. A 33-point improvement in FJS-12 and 10-point change in OKS was observed which is approximately 3x the MCID of each score. Mean Oxford Knee Score for this cohort at only 3-months following robotic-assisted UKA (OKS 40.5) are comparable to 6-month scores typically reported for manual procedures (OKS 37.7)[2].

Table 2. Functional outcomes

TUG = timed-up-and-go test, OKS = Oxford Knee Score, FJS-12 = Forgotten Joint Score 12, NRS = Numerical Pain Rating Scale. *Friedman's 2-way ANOVA

CONCLUSIONS

Compared to baseline, muscle strength (peak torque) declines by 6-weeks but rebounds by 12-weeks. This change occurs within substantial and sequential improvement in functional and clinical outcomes.

The outcomes seen here at 12-weeks reflect the longer-term outcomes typically reported for UKA.

This rapid recovery suggests that enhanced implant positioning / reduced surgical trauma may influence early physical recovery.

REFERENCES

[1] Fuchs S, et al. Muscle Strength in Patients with Unicompartmental Arthroplasty. Am J Phys Med Rehabil 2004;8
[2] Liddle AD, et al. Patient Reported Outcomes after total and unicompartmental knee arthroplasty. A study of 14076 matched patients from the National Joint Registry for England and Wales. Bone Joint J 2015;97

d.hamilton@napier.ac.uk
 @df_hamilton

