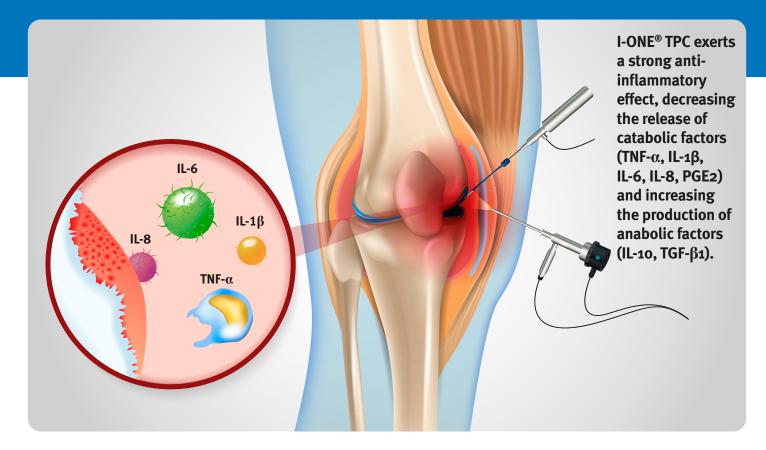
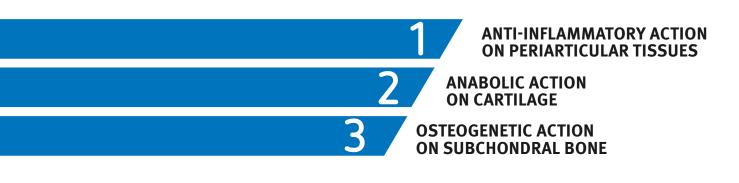
The completion of surgery




I-ONE® TPC

The completion of surgery

Surgery, even if minimally invasive, generates a strong LOCAL INFLAMMATORY REACTION that can affect tissue healing, causing pain to become chronic and compromising the RESULT OF THE SURGERY.

Actions of I-ONE® TPC:

»PORTABLE DEVICE«

Single-patient device

The device is packaged in a sealed blister and all components in contact with the patient are disposed of at the end of the therapy cycle.

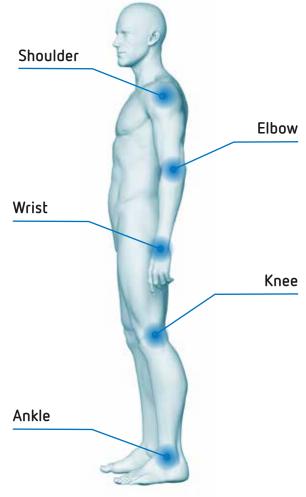
Patented A biophysical sig

A biophysical signal covered by international patents makes I-ONE® TPC **unique** and **not reproducible**.

Safety

The therapy parameters are preset by IGEA and cannot be modified by the patient, in compliance with the current legislation. To ensure safety, efficacy and simplicity of use, I-ONE[®] therapy **is operated with a single button (on/off).**

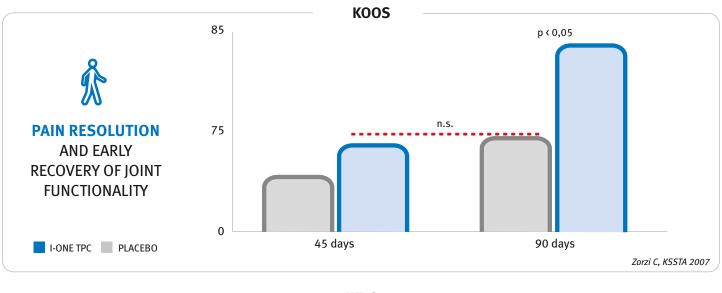
Compliance

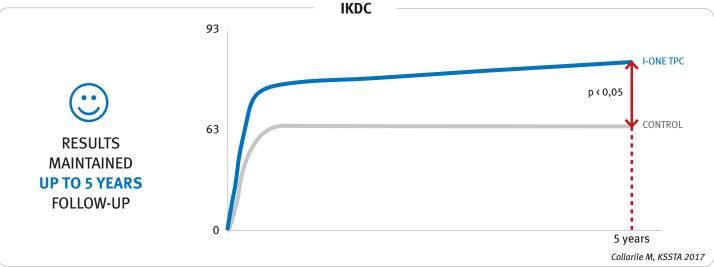

A **light, flexible and ergonomic** coil guarantees the best possible freedom of movement.

Efficacy

Similarly to a pharmacological therapy, the efficacy of the therapy is guaranteed by a homogeneous and correct distribution of the biophysical signal in the area to be treated.

Sites treatable with I-ONE® TPC


Post cartilage surgery

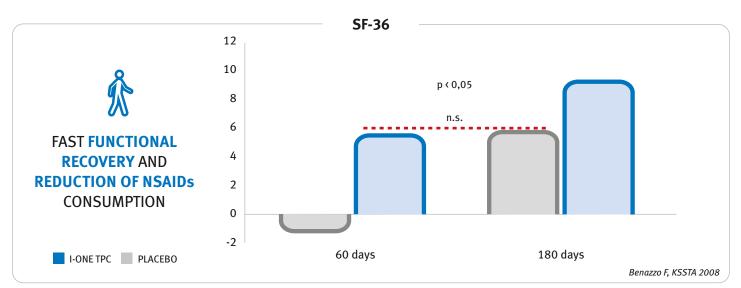

The joint microenvironment is a fundamental variable for the success of all surgical techniques of reparative or regenerative medicine. Inflammation has a strong impact on the degradation and survival of the new tissue, influencing the success of the surgery.

I-ONE[®] TPC

- Creates an environment conducive to the success of different surgical techniques.
- Preserves the quality of the cartilage and the survival of the subchondral bone.
- Maintains the extracellular matrix intact and inhibits the release of catabolic factors.

Chondral and osteochondral lesions

The effectiveness of I-ONE® TPC is independent of the restorative or regenerative medicine technique used.

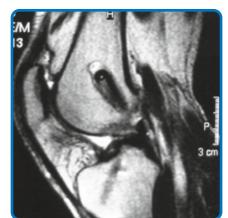

Post ligament surgery

Functional recovery of the limb can be hampered by pain and swelling. If not properly treated, they can lead to an incomplete return to sports activity.

I-ONE[®]TPC

- Controls the joint inflammatory process.
- Resolves pain symptoms in a short time.
- Enhances Range Of Motion.

ACL reconstruction + meniscectomy



CLINICAL CASE

PATIENT STIMULATED WITH I-ONE® TPC

Total absence of intra-articular effusion

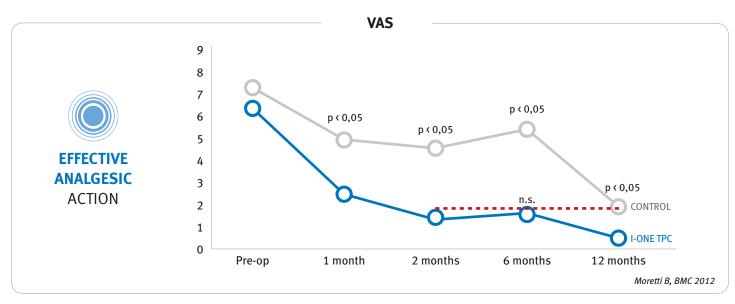
MRI 6 months after surgery

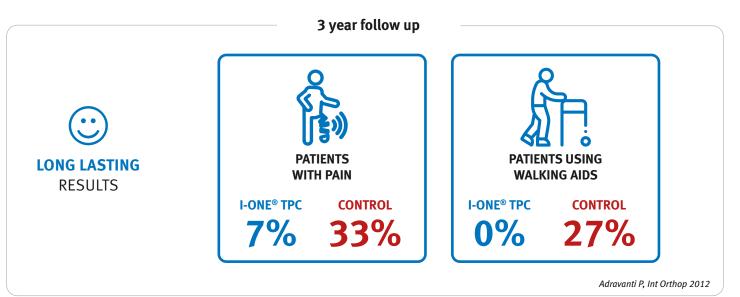
PATIENT PLACEBO GROUP

Presence of intra-articular effusion

MRI 6 months after surgery

Courtesy of Dr. G. Zanon


Post prosthetic surgery

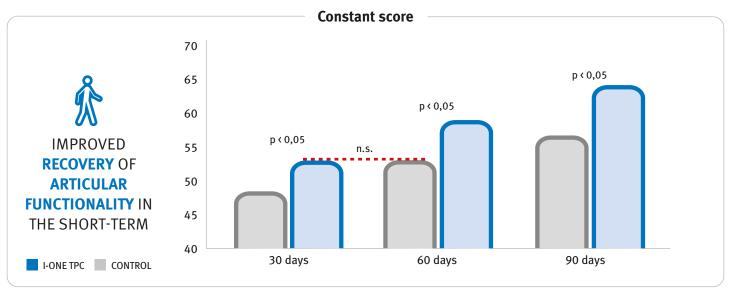

The persistence of post-operative pain represents a problem which can lead to chronic pain in over 20% of patients, even after many years.

I-ONE[®]TPC

- Inhibits the inflammatory process of the periarticular tissues.
- Effectively controls pain and prevents it from becoming chronic.
- Promotes full functional recovery, maintaining the result over time.

Knee arthroplasty

Post prosthetic surgery


The persistence of post-operative pain represents a problem which can lead to chronic pain in over 20% of patients, even after many years.

I-ONE[®] TPC

- Inhibits the inflammatory process of the periarticular tissues.
- Effectively controls pain and prevents it from becoming chronic.
- Promotes full functional recovery, maintaining the result over time.

Reverse shoulder arthroplasty

La Verde L, GIOT 2019

Clinical indications

- KNEE AND SHOULDER ARTHROPLASTY
- ACL RECONSTRUCTION
- MENISCECTOMY

- MICROFRACTURES
- MACI
- TECHNIQUES OF REGENERATIVE MEDICINE

Daily treatment time: 4 hours. Treatment duration: 60 days. The therapy can be repeated.

References

- Adravanti P, Nicoletti S, Setti S, Ampollini A, de Girolamo L. Effect of pulsed electromagnetic field therapy in patients undergoing total knee arthroplasty: a randomised controlled trial. Int Orthop. 2014 Feb;38(2):397-403.
- Benazzo F, Cadossi M, Cavani F, et al. Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields.J Orthop Res. 2008 May;26(5):631-42
- Benazzo F, Zanon G, Pederzini L et al. Effects of biophysical stimulation in patients undergoing arthroscopic reconstruction of anterior cruciate ligament: prospective, randomized and double blind study. Knee Surg Sports Traumatol Arthrosc. 2008 Jun;16(6):595-601.
- Cadossi M, Buda RE, Ramponi L, Sambri A, Natali S and Giannini S. Bone Marrow–derived Cells and Biophysical Stimulation for Talar Osteochondral Lesions: A Randomized Controlled Study. Foot Ankle Int. 2014 Oct;35(10):981-7.
- Collarile M, Sambri A, Lullini G, Cadossi M, Zorzi C. Biophysical stimulation improves clinical results of matrix-assisted autologous chondrocyte implantation in the treatment of chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc. 2018 Apr;26(4):1223-1229.
- De Mattei M, Pellati A, Pasello M, Ongaro A, Setti S, Massari L, Gemmati D, Caruso A. Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthritis Cartilage. 2004;12(10):793-800.
- De Mattei M, Varani K, Masieri FF et al. Adenosine analogs and electromagnetic fields inhibit prostaglandin E(2) release in bovine synovial fibroblasts. Osteoarthritis Cartilage. 2009 Feb;17(2):252-62.
- Fini M, Pagani S, Giavaresi G, De Mattei M, Ongaro A, Varani K, Vincenzi F, Massari L, Cadossi M. Functional Tissue Engineering in Articular Cartilage Repair: Is There a Role for Electromagnetic Biophysical Stimulation? Tissue Eng Part B Rev. 2013 Aug;19(4):353-67
- Fini M, Torricelli P, Giavaresi G et al. Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs. Biomed Pharmacother. 2008;62(10):709-15.
- La Verde L, Franceschetti E, Palumbo A, Giovannetti E, Ranieri R, Sorini G, Rosa MA, Franceschi F. Applicazione dei campi magnetici pulsati

nei pazienti sottoposti a protesi inversa di spalla: valutazione clinica e funzionale. GIOT 2019;45:37-46.

- Massari L, Benazzo F, De Mattei M et al. Effects of electrical physical stimuli on articular cartilage. J Bone Joint Surg Am. 2007;89 Suppl 3:152-61. Review
- Moretti B, Notarnicola A, Moretti L, Setti S, De Terlizzi F, Pesce V, Patella V. I-ONE[®] therapy in patients undergoing total knee arthroplasty: a prospective, randomized and controlled study. BMC Musculoskelet Disord. 2012 Jun 6;13(1):88.
- Ongaro A, Pellati A, Setti S, et al.: Electromagnetic fields counteract IL-1β activity during chondrogenesis of bovine mesenchymal stem cells. J Tissue Eng Regen Med, 2015.
- Osti L, Del Buono A, Maffulli N. Application of pulsed electromagnetic fields after microfractures to the knee: a mid-term study. Int Orthop. 2015 Jul;39(7):1289-1294.
- Osti L, Del Buono A, Maffulli N. Pulsed electromagnetic fields after rotator cuff repair: a randomized, controlled study. Orthopedics. 2015 Mar; 38(3):e223-228.
- Varani K, Vincenzi F, Ravani A, Pasquini S, Merighi S, Gessi S, Setti S, Cadossi M, Borea PA, Cadossi R. Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields. Mediators Inflamm. 2017:2740963. doi: 10.1155/2017/2740963
- Veronesi F, Cadossi M, Giavaresi G, Martini L, Setti S, Buda R, Giannini S, Fini M. Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study. BMC Musculoskelet Disord. 2015 Sep 2;16:233.
- Veronesi F, Torricelli P, Giavaresi G, Sartori M, Cavani F, Setti S, Cadossi M, Ongaro A, Fini M. In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis. J Orthop Res. 2014 May;32(5):677-85.
- Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Goldring MB, Borea PA, Varani K. Pulsed Electromagnetic Fields Increased the Anti-inflammatory Effect of A2A and A3 Adenosine Receptors in Human T/C-28a2 Chondrocytes and hFOB 1.19 Osteoblasts. PLoS One. 2013 May 31;8(5):e65561.
- Zorzi C, Dall'oca C, Cadossi R, Setti S. Effects of pulsed electromagnetic fields on patients' recovery after arthroscopic surgery: prospective, randomized and doubleblind study. Knee Surgery, Sports Traumatology, Arthroscopy 2007;15(7):830-4

This folder refers to the medical device ref.CBA-03, Series I-ONE.

The device complies with the Medical Device Directive 93/42/EEC and its revised version. The device is marked 0051.

The device complies with the standard IEC 60601-1 - for the basic safety and essential performance of Medical electrical equipment. The device complies with the standard IEC 60601-1-11 for the Medical electrical equipment used in the home healthcare environment.

IGEA/E010/06/21

IGEA Medical UK

Suites 1 & 2 Parkhill Business Park, Walton Road, Wetherby, West Yorkshire, LS22 5DZ | Phone: +44 1937 547065 www.igeamedical.com | info.uk@igeamedical.com