

I-One® Therapy

Mechanism of action

PEMFs exposure.

UP-REGULATION
OF ADENOSINE A
RECEPTORS ON
THE CELL SURFACE

Inhibition of inflammation via an adenosine agonist effect

I-One® Therapy_

A comprehensive joint care treatment

Cartilage

I-ONE* therapy stimulates the cartilage matrix synthesis and exerts a chondroprotective effect.

Sinovia

I-ONE" therapy exerts an anti-inflammatory effect, decreasing the release of catabolic factors (TNF-α, IL-6, IL-8, IL-1β, PGE) and increasing the production of anabolic factors (IL-10, TGF-β1).

Subchondral bone

I-ONE* therapy prevents sclerosis of the subchondral bone and facilitates the reabsorption of bone edema.

The signal generated by I-ONE® therapy evenly permeates all joints

Cutting-edge technology that redefines the user experience and guarantees the highest quality and safety standards.

An MDR-certified device:
The new European regulation on medical devices guarantees the highest level of protection.

Early stages of osteoarthritis

I-ONE® therapy is suitable for patients with osteoarthritis grade O-2 according to the Kellgren-Lawrence classification who present pain and functional limitations.

I-One® Therapy_

- Has a chondroprotective effect
- Effectively alleviates pain symptoms
- Improves joint function

DAILY

RESOLUTION

KOOS SCALE

... 6 : 15 ... A : 1 ...

Gobbi A et al. JST, 2011

Patients stimulated with I-ONE® therapy showed an improvement in pain relief and quality of life with a full return to daily activities.

Bone edema / SONK

I-ONE® therapy is indicated in symptomatic patients with acute or chronic idiopathic, post-traumatic or degenerative bone edema.

I-One® Therapy_

Accelerates reabsorption of edema

- Effectively alleviates pain symptoms
- Delays the need for surgical intervention

PAIN RESOLUTION IN

CLINICAL CASE

BEFORE

24 months

PRE-TREATMENT 6 months

I-One[®] Therapy

AFTER 3 MONTHS

Courtesy of Dr. Marcheggiani Muccioli

CRPS

I-ONE® therapy is indicated in patients with Complex Regional Pain Syndrome Type I.

I-One Therapy __

- Controls the joint inflammatory process
- Effectively alleviates pain symptoms
- Inhibits osteoclastogenesis

TRIGGER EVENT

M1

Uncontrolled sympathetic response

04

Localised osteoporosis osteonecrosis

02 Inflammation, edema, pain

03

Limited function

I-ONE® Therapy
CAN HALT THE
VICIOUS CIRCLE,

acting on the inflammation, edema and pain

CLINICAL CASE

BEFORE

I-ONE* terapia

AFTER

Borelli PP. Chir Mano. Vol. 54(3) 2017

Patellofemoral pain syndrome

I-ONE® therapy is indicated in patients with PFS who complain of localised pain in the front of the knee when walking or doing sports.

I-One® Therapy

- Effectively alleviates pain symptoms
- Reduces the requirements for NSAIDs
- Enables a speedier return to sporting activities

VISA score variation

VAS scale variation

INTRA-ARTICULAR SWELLING

BONE EDEMA / SONK

PATELLOFEMORAL PAIN SYNDROME

CRPS

Dosage/Treatment time: 4 hours/day for 30-60 days. The therapy is repeatable

REFERENCES

- Benazzo F et al. Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res. 2008 May;26(5):631-42
- Fini M et al. Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs. Biomed Pharmacother. 2008 Dec;62(10):709-15
- Gobbi A et al. L'uso dei campi elettromagnetici pulsati in pazienti sintomatici con lesioni degenerative della cartilagine del ginocchio: un rapporto preliminare. Journal of Sports Traumatology. 2011;Vol. 28, No. 4. Dicembre 2011
- Ongaro A et al. Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics. 2011 Oct;32(7):543-51
- Bruscoli R. Necrosi del CFM del ginocchio in un podista master. Trattamento con CEMP. ReaLiMe, Maggio 2012;14:15
- Ongaro A et al. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts. J Cell Physiol. 2012 Jun;227(6):2461-9
- Marcheggiani Muccioli GM et al. Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: Pulsed electromagnetic fields therapy. Eur J Radiol. 2013 Mar;82(3):530-7
- Gobbi A et al. Symptomatic Early Osteoarthritis of the Knee Treated With Pulsed Electromagnetic Fields: Two-Year Followup. Cartilage. 2014 Apr; 5(2):76-83
- Ongaro A et al. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics. 2014 Sep;35(6):426-36

- Veronesi F et al. In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis. J Orthop Res. 2014 May;32(5):677-85
- Fini M et al. Razionale d'uso della stimolazione biofisica nell'algodistrofia. Chirurgia della Mano - Vol. 52 (3) 2015
- Veronesi F et al. Experimentally induced cartilage degeneration treated by pulsed electromagnetic field stimulation; an in vitro study on bovine cartilage. BMC Musculoskelet Disord. 2015 Oct 20;16(1):308
- Veronesi F et al. Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study. BMC Musculoskelet Disord. 2015 Sep 2;16:233
- Massari L. La stimolazione biofisica articolare. Giornale Italiano di Ortopedia e Traumatologia. 2016;42(Suppl.1):S73-S78
- Servodio lammarrone C et al. Is there a role of pulsed electromagnetic fields in management of patellofemoral pain syndrome? Randomized controlled study at one year follow-up. Bioelectromagnetics. 2016 Feb;37(2):81-8
- Massari L et al. Impiego clinico della stimolazione elettrica in ortopedia e traumatologia. Giornale Italiano di Ortopedia e Traumatologia. 2017;43:105-106
- Pagani S et al. Complex Regional Pain Syndrome Type I, a Debilitating and Poorly Understood Syndrome. Possible Role for Pulsed Electromagnetic Fields: A Narrative Review. Pain Physician. 2017 Sep;20(6):E807-E822
- Varani K et al. Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields," Mediators of Inflammation, vol. 2017, Article ID 2740963, 2017. doi:10.1155/2017/2740963

This brochure relates to the I-ONE series Mod.CBA04 device.

The Device complies with MDR, Medical Device Regulation (EU) 2017/745 and is marked **€** 0051. It is compliant with IEC 60601-1 for the safety and essential performance of medical devices and the technical standards referred to therein. It is compliant with IEC 60601-1-11 for the safety of medical devices for home use.

IGEA/E021/04/2024

IGEA MEDICAL UK

Suites 1 & 2. Parkhill Business Centre Annexe, Walton Road Wetherby LS22 5DZ West Yorkshire (UK) www.igeamedical.com

CUSTOMER SERVICE

(📞) +44 01937 547065 🔀 customerservicesuk@igeamedical.com