Michael Beverly, David Murray BOA September 2022 ePoster 503 HYDRAULIC FORCE LOAD TRANSMISSION IN JOINTS

Background

With loading very high fluctuating subchondral intraosseous pressures (IOP) occur. Method

Perfused calf foot model with intraosseous pressure recording during ex-fix loading

Results

Perfusion - fills bone slowly Load - gives instant rise IOP - proportional to load Exceeds perfusion pressure Even when not perfused Repetition 'pumps out' Must be a valve in system

Conclusions: IOP only reflects perfusion at the needle tip, and is affected by vascular obstruction and load. High pressures occur under the joint surface. Bone is micro-flexible. Bone fat is oily or fluid at body temperature and acts as a hydraulic pressure transfer medium. Previously undescribed vessels run in the subchondral plane consistent with marks seen on MRI scans. At the cortical margin, complex distortions exist which act as choke-valves. With a raised surrounding intraosseous pressure, they close to prevent turbulent flow in and out of the subchondral bone. Load is transferred partly by hydraulic pressure.

