Orthobiologics: Osteoarthritis

Iain R Murray, Martyn Snow, Cosimo De Bari and Andrew W McCaskie

Osteoarthritis (OA) affects around 8.5 million people in the UK alone\(^1\) and the success of treating end-stage disease with joint replacement is well known. The treatment of osteoarthritis at earlier stages is less clear and represents an important area of global unmet clinical need. Around half of the 8.5 million people with OA in the UK are between 45-65 years of age, in whom knee replacement is known to have a higher risk of failure, with around 33% of primaries performed between the ages of 50 and 55 requiring revision.\(^2\)

The unmet need coupled with the limitations of conventional arthroplasty have led to great interest in the development of new treatments for early stage OA, in order to modify symptoms and/or modify the natural history, with the aim to delay replacement.

It is important to appreciate that OA at early stages is heterogenous, both in terms of disease progression and pathogenesis, with distinct clinical phenotypes.\(^3\) Stratification of patients in early-stage OA therefore offers a ‘window of opportunity’ for intervention and this can increasingly be characterised by biomarkers and imaging e.g. MRI. We will review the therapies generally considered orthobiologics, which will exclude some types of regenerative therapies, for example those aimed at treating defined cartilage lesions before OA, such as autologous chondrocyte implantation, which has NICE approval.\(^5\)

Orthobiologic therapies

In recent years, novel intra-articular injectable therapies have gained increasing attention with both the biomedical community and the public.\(^6\) The most widely available Orthobiologic therapies are autologous blood products, and cell therapies prepared from bone marrow and adipose tissue. Autologous blood products include platelet-rich plasma (PRP) preparations and autologus anti-inflammatory (AAI) preparations. Cell therapies can broadly be divided into those harvested and delivered at the point of care (including concentrate of bone marrow aspirate, commonly abbreviated to BMAC, stromal vascular fraction, (SVF) and microfragmented adipose tissue (MFAT)) and those requiring a degree of processing considered ‘more than minimal manipulation’ or a period of cell culture in a laboratory (Figure 1).

Autologous blood products

Platelet-Rich Plasma (PRP): Growth factors contained in PRP act on pathways that can dampen the inflammatory response. In addition, growth factors present in PRP have been shown to stimulate collagen synthesis, extracellular matrix production, and promote cell proliferation in laboratory conditions.\(^7\) The use of PRP in OA has been studied in more than 30 prospective RCTs, with most involving the knee. The data has been reported in multiple meta-analyses\(^8-12\) demonstrating improved symptom control, favoring PRP preparations over controls (including hyaluronic acid, saline and corticosteroid), when only prospective randomised studies were included.\(^8-12\) There are no safety concerns but as yet there is no evidence demonstrating restoration or regeneration of articular cartilage.\(^9-13\) Recent professional guidelines including the AAOS\(^14\).
1. **Point of care cell-based therapies**

BMAC and bone marrow mononuclear cell (BM-MNC) preparations: BMAC contains bone marrow cells, small tissue fragments, and blood from venous sinuses. The MSC concentration is low, comprising 0.001%-0.01% of all mononuclear cells. Related preparations include BM-MNCs which are isolated and enriched from bone marrow aspirate by chemical density gradients. The nucleated cells in BMAC may deliver cytokines and growth factors at the delivery site. There is little support for restoration of degenerate cartilage and no reports of long-term survival or meaningful engraftment of delivered cells. A small number of prospective randomised studies have evaluated the use of BMAC or BM-MNCs in the setting of OA, with conflicting results.

Microfragmented adipose tissue (MFAT): Microfragmented fat products are prepared via non-enzymatic mechanical disruption of lipoaspirate into small particles partially releasing cells from the extracellular matrix. The proposed mechanism relates to a role for cushioning and support, as well as the capacity for the cells present to release a range of immunomodulatory and trophic factors.
There are a large number of non-randomised studies reporting promising results, but no completed RCT of injection alone for large joint OA has been published.

Stromal vascular fraction (SVF): SVF is prepared from adipose tissue, typically by enzymatic digestion, and aims to harness the potential of the MSCs and other cell types. Two RCTs have reported improvements in PROMs with SVF over controls, with one study reporting improvement in MRI cartilage parameters.

Point of care manufacture

The Medicines and Healthcare products Regulatory Agency (MHRA) is currently considering a new framework to enable the safe development of point of care (POC) products. This will include the use of device technologies for isolating tissues and cells or blood components, and may have a significant impact on their future use in the UK.

2. Cultured Cells

Cultured 'mesenchymal stromal cells' (MSCs): In contrast to POC manufacture, laboratory culture allows for the administration of millions of MSCs. They are classified as an Advanced Therapy Medicinal Product (ATMP) and are highly regulated (MHRA) and generally more expensive to produce than POC products. Overall, published prospective RCTs evaluating culture expanded MSCs for knee osteoarthritis reported a positive effect on patients' symptoms with some advanced imaging parameters indicating improvements in cartilage quality. The vast majority of studies only report outcomes to one year and larger and longer randomised controlled studies are required.

Patient stratification and the challenges of orthobiologics

The heterogeneity in both patients with the early stages of OA (progression and pathogenesis) and in orthobiologic preparations makes the interpretation of findings from clinical studies challenging. Moving forward, sound clinical evidence will benefit from reduced heterogeneity in relation to manufacture, potency and delivery. As always in medicine one solution does not fit all and the stratification of patients with OA will contribute to our ability to develop more targeted interventions (Figure 2). To achieve widespread adoption, in addition to effectiveness, cost-effectiveness is important, particularly in therapies looking to alter the natural history of OA, over and above symptom relief. In conclusion, we are at the start of an era of unprecedented opportunity for orthopaedic and musculoskeletal therapy development, not least for patients suffering from OA.

Acknowledgements

CDB, AWM and MS acknowledge the financial support of Versus Arthritis through the Versus Arthritis Tissue Engineering & Regenerative Therapies Centre (Grant 21156).

Selected references

References

References can be found online at www.boa.ac.uk/publications/JTO.